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Abstract 

Motivation. How to selecting a small subset out of the 
thousands of genes in microarray data is important for ac-
curate classification of phenotypes. Widely used methods 
typically rank genes according to their differential expres-
sions among phenotypes and pick the top-ranked genes. We 
observe that feature sets so obtained have certain redun-
dancy and study methods to minimize it. 

Results. We propose a minimum redundancy – maximum 
relevance (MRMR) feature selection framework. Genes 
selected via MRMR provide a more balanced coverage of 
the space and capture broader characteristics of phenotypes. 
They lead to significantly improved class predictions in 
extensive experiments on 5 gene expression data sets: NCI, 
Lymphoma, Lung, Leukemia and Colon. Improvements are 
observed consistently among 4 classification methods: Na-
ïve Bayes, Linear discriminant analysis, Logistic regression 
and Support vector machines.  

Supplimentary: The top 60 MRMR genes for each of the 
dataset are listed in http://www.nersc.gov/~cding/MRMR/. 

Contact. chqding@lbl.gov, hpeng@lbl.gov 

1. Introduction 
Discriminant analysis is now widely used in bioinformat-
ics, such as distinguishing cancer tissues from normal tis-
sues [2] or one cancer subtype vs another [1], predicting 
protein fold or super-family from its sequence [7][14], etc. 
A critical issue in discriminant analysis is feature selection: 
instead of using all available variables (features or attrib-
utes) in the data, one selectively chooses a subset of fea-
tures to be used in the discriminant system. There are a 
number of advantages of feature selection: (1) dimension 
reduction to reduce the computational cost; (2) reduction of 
noise to improve the classification accuracy; (3) more in-
terpretable features or characteristics that can help identify 
and monitor the target diseases or function types. These 
advantages are typified in DNA microarray gene expres-
sion profiles. Of the tens of thousands of genes in experi-
ments, only a smaller number of them show strong correla-
tion with the targeted phenotypes. For example, for a two-
class cancer subtype classification problem, 50 informative 
genes are usually sufficient [12]. There are studies suggest-
ting that only a few genes are sufficient [20][35]. Thus, 
computation is reduced while prediction accuracy is in-
creased via effective feature selection. When a small num-

ber of genes are selected, their biological relationship with 
the target diseases is more easily identified. These "marker" 
genes thus provide additional scientific understanding of 
the problem. Selecting an effective and more representative 
feature set is the subject of this paper.  

There are two general approaches to feature selection: 
filters and wrappers [16][18]. Filter type methods are es-
sentially data pre-processing or data filtering methods. Fea-
tures are selected based on the intrinsic characteristics 
which determine their relevance or discriminant powers 
with regard to the target classes. Simple methods based on 
mutual information [4], statistical tests (t-test, F-test) have 
been shown to be effective [12][6][9][22]. More sophisti-
cated methods are also developed [17][3]. Filter methods 
can be computed easily and very efficiently. The character-
istics in the feature selection are uncorrelated to that of the 
learning methods, therefore they have better generalization 
property. In wrapper type methods, feature selection is 
"wrapped" around a learning method: the usefulness of a 
feature is directly judged by the estimated accuracy of the 
learning method. One can often obtain a set with a small 
number of non-redundant features [16] [5][20][35] , which 
gives high prediction accuracy, because the characteristics 
of the features match well with the characteristics of the 
learning method. Wrapper methods typically require exten-
sive computation to search the best features.  

2. Minimum Redundancy Gene Selection 

One common practice of filter type methods is to sim-
ply select the top-ranked genes, say the top 50 [12]. More 
sophisticated regression models or tests along this line were 
also developed [29][26][34]. So far, the number of features, 
m, retained in the feature set is set by human intuition with 
trial-and-error, although there are studies on setting m 
based on certain assumptions on data distributions [20]. A 
deficiency of this simple ranking approach is that the fea-
tures could be correlated among themselves [15][8]. For 
example, if gene gi is ranked high for the classification 
task, other genes highly correlated with gi are also likely to 
be selected by the filter method. It is frequently observed 
[20][35] that simply combining a "very effective" gene 
with another "very effective" gene often does not form a 
better feature set. One reason is that these two genes could 
be highly correlated. This raises the issue of "redundancy" 
of feature set. 

The fundamental problem with redundancy is that the 
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feature set is not a comprehensive representation of the 
characteristics of the target phenotypes. There are two as-
pects of this problem. (1) Efficiency. If a feature set of 50 
genes contains quite a number of mutually highly corre-
lated genes, the true "independent" or "representative" 
genes are therefore much fewer, say 20. We can delete the 
30 highly correlated genes without effectively reducing the 
performance of the prediction; this implies that 30 genes in 
the set are essentially "wasted". (2) Broadness. Because the 
features are selected according to their discriminative pow-
ers, they are not maximally representative of the original 
space covered by the entire dataset. The feature set may 
represent one or several dominant characteristics of the 
target phenotypes, but these could still be narrow regions of 
the relevant space. Thus, the generalization ability of the 
feature set could be limited. 

Based on these observations, we propose to expand the 
representative power of the feature set by requiring that 
features are maximally dissimilar to each other, for exam-
ple, their mutual Euclidean distances are maximized, or 
their pairwise correlations are minimized. These minimum 
redundancy criteria are supplemented by the usual maxi-
mum relevance criteria such as maximal mutual informa-
tion with the target phenotypes. We therefore call this ap-
proach the minimum redundancy – maximum relevance 
(MRMR) approach. The benefits of this approach can be 
realized in two ways. (1) With the same number of fea-
tures, we expect the MRMR feature set to be more repre-
sentative of the target phenotypes, therefore leading to bet-
ter generalization property. (2) Equivalently, we can use a 
smaller MRMR feature set to effectively cover the same 
space as a larger conventional feature set does. 

The main contribution of this paper is to point out the 
importance of minimum redundancy in gene selection and 
provide a comprehensive study. One novel point is to di-
rectly and explicitly reduce redundancy in feature selection 
via filter approach. Our extensive experiments indicate that 
features selected in this way lead to higher accuracy than 
features selected via maximum relevance only. 

3. Criterion Functions of Minimum Redundancy 
3.1. MRMR for Categorical (Discrete) Variables 

If a gene has expressions randomly or uniformly dis-
tributed in different classes, its mutual information with 
these classes is zero. If a gene is strongly differentially ex-
pressed for different classes, it should have large mutual 
information. Thus, we use mutual information as a measure 
of relevance of genes.  

For discrete/categorical variables, the mutual informa-
tion I of two variables x and y is defined based on their 
joint probabilistic distribution p(x,y) and the respective 
marginal probabilities p(x) and p(y):  

)()(
),(

log),(),(
, ji

ji
jiji ypxp

yxp
yxpyxI Σ= .  (1) 

For categorical variables, we use mutual information to 
measure the level of "similarity" between genes. The idea 
of minimum redundancy is to select the genes such that 
they are mutually maximally dissimilar. Minimal redun-
dancy will make the feature set a better representation of 
the entire dataset.  Let S denote the subset of features we 
are seeking. The minimum redundancy condition is 
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where we use I(i,j) to represent I(gi,gj)  for notational sim-
plicity, and |S| is the number of features in S. 

To measure the level of discriminant powers of genes 
when they are differentially expressed for different target 
classes, we again use mutual information I(h,gi) between 
targeted classes h={h1,h2,…,hK} (we call h the classifica-
tion variable) and the gene expression gi. I(h,gi) quantifies 
the relevance of gi for the classification task. Thus the 
maximum relevance condition is to maximize the total rele-
vance of all genes in S: 
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where we refer to I(h,gi) as I(h,i).  

The MRMR feature set is obtained by optimizing the 
conditions in Eqs.(2) and (3) simultaneously. Optimization 
of both conditions requires combining them into a single 
criterion function. In this paper we treat the two conditions 
equally important, and consider two simplest combination 
criteria:  
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Our goal here is to see whether the MRMR approach is 
effective in its simplest forms. More refined variants can be 
easily studied later on. 

Exact solution to the MRMR requirements requires 
O(N|S|) searches (N is the number of genes in the whole 
gene set, Ω). In practice, a near optimal solution is suffi-
cient. In this paper, we use a simple heuristic algorithm to 
resolve this MRMR optimization problem.  
Table 1: Different schemes to search for the next feature in 
MRMR optimization conditions. 
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In our algorithm, the first feature is selected according 
to Eq. (3), i.e. the feature with the highest I(h,i). The rest 
features are selected in an incremental way: earlier selected 
features remain in the feature set. Suppose m features are 
already selected for the set S, we want to select additional 
features from the set ΩS = Ω − S (i.e. all genes except those 
already selected). We optimize the following two condi-
tions: 

),(max ihI
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The condition in Eq. (6) is equivalent to the maximum 
relevance condition in Eq. (3), while Eq. (7) is an approxi-
mation of the minimum redundancy condition of Eq. (2). 
The two ways to combine relevance and redundancy, Eqs. 
(4) and (5),  lead to the selection criteria of a new feature:  

(1) MID: Mutual Information Difference criterion, 

(2) MIQ: Mutual Information Quotient criterion,  

as listed in Table 1. These optimizations can be computed 
efficiently in O(|S|⋅N) complexity.  

3.2. MRMR for Continuous Variables  

For continuous data variables (or attributes), we can 
choose the F-statistic between the genes and the classifica-
tion variable h as the score of maximum relevance. The F-
test value of gene variable gi in K classes denoted by h has 
the following form [6][9]:  
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k
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where g  is the mean value of gi in all tissue samples, kg  
is the mean value of gi within the kth class, and 

)(])1([ 22 Knn kkk
−−Σ= σσ  is the pooled variance (where nk 

and σk are the size and the variance of the kth class). F-test 
will reduce to the t-test for 2-class classification, with the 
relation F=t2. Hence, for the feature set S, the maximum 
relevance can be written as: 
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The minimum redundancy condition may be specified 
in several ways. If we use Pearson correlation coefficient 
c(gi,gj) = c(i,j), the condition is 
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where we have assumed that both high positive and high 
negative correlation mean redundancy, and thus take the 
absolute value of correlations. (We may also use Euclidean 
distance as a measure of redundancy. As shown in our pre-
liminary results [8], Euclidean distance is not as effective 
as correlation.) 

Now the simplest MRMR optimization criterion func-
tions involving above conditions are:  

(1) FCD: combine F-test with correlation using difference,  

(2) FCQ: combine F-test with correlation using quotient, 

as shown in Table 1. 

We use the same linear incremental search algorithm 
as in the discrete variable case in §3.1. Assume m features 
have already been selected; the next feature is selected via a 
simple linear search based on the criteria listed in Table 1 
for the above four criterion functions.  

4. Class Prediction Methods  
4.1. Naïve-Bayes (NB) Classifier  

The Naïve Bayes (NB) [21] is one of the oldest classifiers. 
It is obtained by using the Bayes rule and assuming fea-
tures (variables) are independent of each other given its 
class. For a tissue sample s with m gene expression levels  
{g1, g2, …, gm} for the m features, the posterior probability 
that s belongs to class hk is  

)|()|( kiSik hgpshp
∈
Π∝ ,  (11) 

where p(gi|hk) are conditional tables (or conditional density) 
estimated from training examples. Despite the independ-
ence assumption, NB has been shown to have good classi-
fication performance for many real data sets, especially for 
documents [21], on par with many more sophisticated 
classifiers.  

4.2. Support Vector Machine (SVM)  

SVM is a relatively new and promising classification 
method [30]. It is a margin classifier that draws an optimal 
hyperplane in the feature vector space; this defines a 
boundary that maximizes the margin between data samples 
in two classes, therefore leading to good generalization 
properties. A key factor in SVM is to use kernels to con-
struct nonlinear decision boundary. We use linear kernels. 

Standard SVM is for 2 classes. For multi-class problems, 
one may construct a multi-class classifier using binary clas-
sifiers such as one-against-others or all-against-all [7]. An-
other approach is to directly construct a multi-class SVM 
[13][33]. In this paper, we used the Matlab version of 
LIBSVM [13]. 

4.3. Linear Discriminant Analysis (LDA)  

Fisher's LDA is a very old classification method. It as-
sumes samples in each class follow a Gaussian distribution. 
The center and covariance matrix are estimated for each 
class. We assume that the off-diagonal elements in the co-
variance are all zero, i.e., different features are uncorre-
lated. A new sample is classified to the class with the high-
est probability. 

4.4. Logistic Regression (LR)  

LR [31] forms a predictor variable that is a linear combina-
tion of the feature variables. The values of this predictor 
variable are then transformed into probabilities by a logistic 
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function. This method is widely used for 2-class prediction 
in biostatistics. It can be extended to multi-class problems 
as well. 

5. Experiments 
5.1. Data Sets  

To evaluate the usefulness of the MRMR approach, we 
carried out experiments on fives data sets of gene expres-
sion profiles. Two expression datasets popularly used in 
research literature are the Leukemia data of Golub et al [12] 
and the Colon cancer data of Alon et al [2]. As listed in 
Table 2, both leukemia and colon data sets have two 
classes. The colon dataset contains both normal and can-
cerous tissue samples. In the Leukemia dataset, the target 
classes are leukemia subtypes AML and ALL. Note that in 
the leukemia dataset, the original data come with training 
and test samples that were drawn from different conditions. 
Here we combined them together for the purpose of leave-
one-out cross validation. 

Table 2. Two-class datasets used in our experiments 

DATASET LEUKEMIA COLON CANCER 
SOURCE Golub et al (1999) Alon et al (1999) 
# GENE 7070 2000 

# SAMPLE 72 62 
CLASS CLASS NAME # SAMPLE CLASS NAME # SAMPLE

C1 ALL 47 Tumor 40 
C2 AML 25 Normal 22 

 
Table 3. Multi-class datasets used in our experiments (#S is the 
number of samples) 

DATASET NCI LUNG CANCER LYMPHOMA 

SOURCE Ross et al (2000) 
Scherf et al (2000) Garber et al (2001) Alizadeh et al (2000) 

# GENE 9703 918 4026 
# S 60 73 96 

# CLASS 9 7 9 
CLASS CLASS NAME # S CLASS NAME # S CLASS NAME # S

C1 NSCLC 9 AC-group-1 21 Diffuse large 
B cell lymphoma 46

C2 Renal 9 Squamous 16 Chronic Lympho. 
leukemia 11

C3 Breast 8 AC-group-3 13 Activated blood B 10
C4 Melanoma 8 AC-group-2 7 Follicular 

lymphoma 9 

C5 Colon 7 Normal 6 Resting/ 
activated T 6 

C6 Leukemia 6 Small-cell 5 Transformed 
cell lines 6 

C7 Ovarian 6 Large-cell 5 Resting blood B 4 
C8 CNS 5   Germinal center B 2 
C9 Prostate 2   Lymph 

node/tonsil 2 

 
Although two-class classification problems are an im-

portant type of tasks, they are relatively easy, since a ran-
dom choice of class labels would give 50% accuracy. Clas-
sification problems with multiple classes are generally 
more difficult and give a more realistic assessment of the 
proposed methods. In this paper, we used three multi-class 
microarray data sets: NCI [27][28], Lung cancer [11] and 
Lymphoma [1]. The details of these data sets are summa-
rized in Table 3. We note that the number of tissue samples 

per class is generally small (e.g. <10 for NCI data) and 
unevenly distributed (e.g. from 46 to 2 in lymphoma data). 
This, together with the larger number of classes (e.g., 9 for 
Lymphoma data), makes the classification task more com-
plex than two-class problems. These five data sets provide 
a comprehensive test suit. 

For the two-class problems, we used the two-sided t-
test selection method, i.e., we imposed the condition that in 
the features selected, the number of features with positive t-
value is equal to that with negative t-value. Compared to 
the standard F-test selection, since F=t2, two-sided t-test 
gives more balanced features whereas F-test does not guar-
antee the two sides have the equal number of features. The 
MRMR feature selection schemes of the F-test (as shown 
in Table 1) can be modified to use two-sided t-test. We 
denote them as TCD (vs FCD) and TCQ (vs FCQ) 
schemes.  

5.2. Assessment Measure 

We assess classification performance using the 
"Leave-One-Out Cross Validation" (LOOCV). CV accu-
racy provides more realistic assessment of classifiers which 
generalize well to unseen data. For presentation clarity, we 
give the number of LOOCV errors in Tables 4 - 8. 

In experiments, we compared the MRMR feature sets 
against the baseline feature sets obtained using standard 
mutual information, F-statistic or t-statistic ranking to pick 
the top m features.  

 5.3. Discretization for Noise Reduction 
The original gene expression data are continuous val-

ues. We directly classified them using SVM, LDA, and LR. 
We pre-processed the data so each gene has zero mean 
value and unit variance. 

We also discretized the data into categorical data for 
two reasons. First reason is noise reduction because the 
original readings contain substantial noise. Second, predic-
tion methods such as NB prefer categorical data so that 
conditional probability can be described using a small ta-
ble. We discretized the observations of each gene expres-
sion variable using σ (standard deviation) and µ (mean): 
any data larger than µ+σ/2 were transformed to state 1; any 
data between µ−σ/2 and µ+σ/2 were transformed to state 0; 
any data smaller than µ−σ/2 were transformed to state -1. 
These three states correspond to the over-expression, base-
line, and under-expression of genes.  

5.4. Results 

We applied the MRMR feature selection methods on both 
continuous and descretized data. The top 60 MRMR genes 
for each of the 5 datasets are listed in 
http://www.nersc.gov/~cding/MRMR/. We performed 
LOOCV using NB, LDA, SVM and LR on all 5 datasets. 
The results of the LOOCV errors are shown in Tables 4 - 8. 
Due to the space limitation we only list results of 
m=3,6,9,…54,60 for multi-class datasets and 
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m=1,2,3,…,8,10,…,50 for 2-class datasets. From these 
comprehensive test results, we have following observa-
tions.  

(1) For discrete datasets, The MRMR MIQ features 
outperform the baseline features. This is consistent for all 
the classification methods and for all 5 datasets. Several 

examples. For Lymphoma dataset, using LDA, MIQ leads 
to 1 errors while baseline leads to 9 errors (see Table 4); 
using SVM, MIQ leads to 1 errors while baseline leads to 8 
errors. For NCI data, using Naïve Bayes, MIQ leads to 1 
LOOCV error while baseline leads to 11 errors (we quote 
the best performance for a given case). 

 
Table 4. Lymphoma data (96 samples for 9 classes) LOOCV errors. 

Classifier Data Type           M 
Method    3 6 9 12 15 18 21 24 27 30 36 42 48 54 60 

Baseline 38 39 25 29 23 22 22 19 20 17 19 18 18 17 17 
MID 31 15 10 9 9 8 6 7 7 7 4 7 5 5 8 NB Discrete 
MIQ 38 26 17 14 14 12 8 8 6 7 5 6 4 3 3 

Baseline 40 42 28 26 20 21 21 20 18 19 14 15 13 14 15 
MID 32 15 14 10 7 5 4 5 4 6 5 3 3 4 3 Discrete 
MIQ 40 29 12 8 8 7 5 6 4 1 1 2 1 2 2 

Baseline 66 26 26 17 17 18 18 18 15 11 14 12 11 11 13 
FCD 33 17 16 10 13 11 11 9 8 8 8 8 7 10 9 

LDA 

Continuous 
FCQ 32 18 11 7 7 8 8 7 8 9 9 9 8 6 6 

Baseline 32 29 25 23 20 22 18 13 14 15 11 10 10 8 9 
MID 24 10 7 4 2 3 3 3 3 3 3 3 3 3 3 Discrete 
MIQ 26 21 13 9 8 7 6 5 5 2 1 1 2 1 2 

Baseline 30 24 14 13 12 13 10 11 13 6 8 9 5 6 7 
FCD 24 19 11 13 11 9 10 8 7 8 7 6 5 4 5 

SVM 

Continuous 
FCQ 31 17 9 7 6 6 8 8 6 7 7 8 7 4 4 

 
Table 5. NCI data (60 samples for 9 classes) LOOCV errors. 

Classifier Data Type           M 
Method    3 6 9 12 15 18 21 24 27 30 36 42 48 54 60 

Baseline 29 26 20 17 14 15 12 11 11 13 13 14 14 15 13 
MID 28 15 13 13 6 7 8 7 7 5 8 9 9 8 10 NB Discrete 
MIQ 27 21 16 13 13 8 5 5 4 3 1 1 1 1 2 

Baseline 35 25 23 20 21 18 19 19 16 19 17 19 17 16 17 
MID 31 20 21 19 16 16 16 16 15 17 16 15 16 16 15 Discrete 
MIQ 34 31 26 21 21 17 15 14 14 14 10 9 9 8 8 

Baseline 41 35 23 21 22 21 20 17 16 17 17 21 19 19 18 
FCD 36 27 21 20 19 18 17 15 18 17 17 17 16 15 14 

LDA 

Continuous 
FCQ 35 25 23 22 17 18 17 18 13 14 14 12 13 15 15 

Baseline 34 29 27 25 21 19 19 19 20 18 17 18 18 18 16 
MID 33 20 19 20 18 17 17 16 17 15 14 14 14 15 16 Discrete 
MIQ 33 32 20 23 22 22 14 13 13 13 9 8 7 7 8 

Baseline 50 33 27 27 24 22 22 20 23 20 17 18 15 16 15 
FCD 41 28 27 22 24 22 20 20 20 19 19 20 17 16 16 

SVM 

Continuous 
FCQ 44 30 26 26 25 24 23 23 19 19 17 18 17 15 18 

 
Table 6. Lung data (73 samples for 7 classes) LOOCV errors. 

Classifier Data Type           M 
Method    3 6 9 12 15 18 21 24 27 30 36 42 48 54 60 

Baseline 29 29 24 19 14 15 10 9 12 11 12 12 10 8 9 
MID 31 14 12 11 6 7 7 7 8 6 6 6 6 5 5 NB Discrete 
MIQ 40 29 17 9 5 8 6 2 4 3 3 2 4 4 3 

Baseline 32 31 22 16 13 10 10 10 10 10 9 9 10 10 10 
MID 32 14 10 9 8 8 7 6 6 6 4 7 6 8 8 Discrete 
MIQ 36 26 14 7 7 7 8 8 7 7 6 5 6 6 7 

Baseline 36 26 14 15 10 9 8 9 12 10 8 10 9 10 10 
FCD 18 13 10 8 8 6 6 7 5 6 7 6 7 6 7 

LDA 

Continuous 
FCQ 27 12 9 8 7 8 8 7 6 6 6 6 6 6 6 

Baseline 38 26 18 21 13 6 10 10 12 11 8 9 10 10 9 
MID 19 11 7 4 7 8 5 5 6 5 5 6 6 7 7 Discrete 
MIQ 41 28 12 9 8 8 8 7 7 6 6 6 6 6 6 

Baseline 30 23 14 15 11 9 9 10 9 8 9 10 10 9 8 
FCD 24 11 13 9 8 7 6 8 7 7 8 5 5 6 7 

SVM 

Continuous 
FCQ 31 13 12 10 10 6 7 8 8 7 5 6 6 6 7 
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Table 7. Leukemia data (72 samples for 2 classes) LOOCV errors. 

Classifier Data Type           M 
Method    1 2 3 4 5 6 7 8 10 12 15 20 30 40 50 

Baseline 4 2 1 1 1 0 0 0 0 0 1 2 1 1 3 
MID 4 3 1 1 1 0 0 0 0 0 0 1 1 2 1 NB Discrete 
MIQ 4 2 1 0 0 0 0 0 0 0 0 0 0 0 0 

Baseline 4 2 2 1 1 1 1 1 2 1 2 2 2 2 3 
MID 4 3 2 1 1 1 1 1 1 1 1 2 2 2 1 Discrete 
MIQ 4 2 2 2 2 2 2 2 2 1 1 0 0 0 0 

Baseline 12 4 2 2 3 3 2 3 3 3 2 3 2 2 2 
TCD 12 4 2 2 2 2 2 2 1 2 2 1 2 1 1 

LDA 

Continuous 
TCQ 12 4 2 2 1 1 1 2 2 2 1 2 1 1 1 

Baseline 4 7 4 3 1 2 2 1 2 1 1 2 2 4 3 
MID 4 3 4 3 3 2 2 2 2 1 1 1 2 2 4 Discrete 
MIQ 4 6 8 2 1 0 0 0 0 0 0 0 0 0 0 

Baseline 9 3 2 2 2 3 3 4 2 3 3 3 3 4 1 
TCD 9 3 2 3 3 3 2 4 2 1 3 5 1 1 1 

SVM 

Continuous 
TCQ 9 3 3 2 2 1 3 0 0 0 1 1 1 1 1 

Baseline 11 7 2 3 3 1 1 1 3 4 5 3 4 5 11 
MID 11 3 2 3 4 1 2 2 3 4 4 2 5 4 8 Discrete 
MIQ 11 6 6 2 0 0 0 0 0 0 0 0 1 1 3 

Baseline 9 2 2 2 4 5 5 6 7 6 1 2 7 12 8 
TCD 9 2 3 3 5 4 2 5 5 2 6 3 2 1 7 

 LR 

Continuous 
TCQ 9 2 3 4 3 2 2 1 0 0 0 1 0 2 3 

 
Table 8. Colon data (62 samples for 2 classes) LOOCV errors. 

Classifier Data Type           M 
Method    1 2 3 4 5 6 7 8 10 12 15 20 30 40 50 

Baseline 10 7 10 9 9 7 9 9 7 8 8 8 9 9 10 
MID 10 8 8 8 9 10 9 8 7 7 7 8 7 7 7 NB Discrete 
MIQ 10 8 12 8 8 6 6 5 4 5 7 7 8 8 7 

Baseline 22 14 10 10 9 9 8 8 8 8 7 9 8 9 8 
MID 22 6 7 7 8 8 9 7 8 7 7 8 8 7 7 Discrete 
MIQ 22 15 12 9 12 10 7 7 7 8 8 7 8 8 8 

Baseline 18 9 7 9 8 7 7 8 8 8 7 7 7 9 9 
TCD 18 9 6 8 6 7 7 7 7 7 6 7 7 7 8 

LDA 

Continuous 
TCQ 18 9 6 6 7 5 6 7 7 7 7 7 7 7 7 

Baseline 10 16 7 7 7 7 11 10 13 12 14 14 15 18 18 
MID 10 6 6 10 8 12 11 12 10 12 8 9 9 13 15 Discrete 
MIQ 10 10 8 12 15 11 7 7 10 12 10 12 11 12 12 

Baseline 14 10 9 11 10 9 9 9 10 10 10 13 10 9 8 
TCD 14 10 8 7 7 7 6 7 8 10 8 8 8 13 14 

SVM 

Continuous 
TCQ 14 10 8 8 7 7 9 9 10 11 10 5 13 12 15 

Baseline 10 7 8 10 11 11 8 9 11 12 14 18 17 23 21 
MID 10 6 9 7 7 11 10 11 11 13 13 15 16 17 15 Discrete 
MIQ 10 10 8 12 12 13 8 8 10 13 14 14 18 22 27 

Baseline 15 7 8 8 9 9 8 9 11 11 12 9 19 24 16 
TCD 15 7 7 9 9 10 9 10 9 11 14 14 13 18 13 

 LR 

Continuous 
TCQ 15 7 7 7 8 9 9 9 11 10 14 10 13 20 21 

 
 (2) For continuous datasets, FCQ features outperform 

baseline features. This is consistent for LDA and SVM for 
all three multi-class datasets, and for LDA, SVM and LR 
for both 2-class datasets (here FCQ is replaced by TCQ). 
Examples. For Lymphoma, using LDA, FCQ leads to 6 
errors while baseline leads to 11 errors. For Lung, using 
SVM, FCQ leads to 5 errors while baseline leads to 8 er-
rors. 

(3) Discretization of gene expression data consistently 
leads to better prediction accuracy. Examples. For Lym-
phoma, using LDA, the best continuous features (selected 
by FCQ) leads to 6 errors while the best discretized fea-

tures (selected by MIQ) lead to 1 error. Using SVM, the 
discrete features also outperform the continuous features. 
The same conclusions can be drawn for all other 4 datasets. 
Note that if we restrict to baseline features, this conclusion 
is not true. In other words, MRMR can make full use of the 
noise reduction due to discretization. 

(4) Naïve Bayes performs better than LDA, SVM, LR. 
For the multi-class datasets NCI and Lung, NB clearly out-
performs other methods. For the 2-class datasets, NB also 
performs better than other methods. However, for Lym-
phoma, using discrete MIQ features, LDA and SVM per-
forms better than NB. 
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(5) With MRMR, for discrete data, MIQ outperforms 
MID; for continuous data, FCQ (or TCQ) is better than 
FCD (TCD). Both MIQ and FCG use the divisive combina-
tion of Eq. (5) while both MID and FCD use the difference 
combination of Eq. (4). Thus the divisive combination of 
relevance and redundancy is preferred. 

We list the best performance of MRMR features to-
gether with the best baseline performance in Table 9. From 
this table, we can quantify the improvements due to 
MRMR feature selection. For the three multi-class datasets, 
the LOOCV errors are reduced by a factor of 10. For the 2-
class datasets, the improvements are also significant, al-
though not as dramatic as for the multi-class datasets. 

To better understand the effectiveness of the MRMR 
approach, we calculated the average relevance VI and aver-
age redundancy WI (see Eqs. (3) and (2)), as plotted in Fig. 
1 (a) and (b). Although for MID and MIQ the relevance 
reduces as compared to baseline, the redundancy also re-
duces considerably. This is most clear for MIQ. The fact 
that the MIQ feature set is the most effective as seen from 
Tables 4 - 8 illustrates the importance of reducing redun-
dancy, the central theme of this research. 

The relevance and redundancy for the continuous NCI 
data are also plotted in Fig.1 (c) and (d). For continuous 
data, the relevance of FCD and FCQ features is reduced 
slightly from that of baseline, while the redundancy of 
FCD/FCQ reduce significantly.  

 

 

 
Figure 1. (a) Relevance VI and (b) redundancy for MRMR fea-
tures on discretized NCI dataset. (c) relevance VF and (d) redun-
dancy Wc on  the continuous NCI dataset. 

5.5 Comparison with Other Work 

Results of similar class prediction on microarray gene 
expression data obtained by others are listed in Table 9. For 
NCI, our result of LOOCV error rate is 1.67% using NB, 
whereas Ooi & Tan [25] obtained 14.6% error rate. On the 
5-class subset of NCI, Nguyen & Rocke [23] obtained 0% 

rate, which is the same as our NB results on the same 5-
class subset. 

 For Lymphoma data (Table 4), our result is LOOCV 
error rate of 1%. Using 3 classes only, Nguyen & Rocke 
[23] obtained 2.4%; on the same 3 classes, our LDA results 
is 0% error rate.  

 The Leukemia data* is a most widely studied dataset.  
Using MRMR feature selection, we achieve 100% LOOCV 
accuracy for every classification methods. Furey et al [10] 
obtained 100% accuracy using SVM, and Lee & Lee [19] 
obtained 1.39% error rate. 

For Colon data*, our result is 6.45% error rate, which is 
the same as Nguyen & Rocke [23] using PLS. The SVM 
result of [10] is 9.68%.  

Table 9. Comparison of the best results (lowest error rates in per-
centage) of the baseline and MRMR features. Also listed are re-
sults in literature. a Ooi & Tan, using genetic algorithm [25]. b 

Nguyen and Rocke [23] used only a 5-class subset of  NCI dataset 
and obtained 0% error rate; using the same 5-class subset, our NB 
achieves also 0% error rate. c Nguyen & Rocke used only 3 
classes in lymphoma dataset and obtain 2.4% error rate. Using the 
same 3 classes, our NB lead to zero errors. d Furey et al, using 
SVM [10]. e Lee & Lee, using SVM [19].  f  Nguyen & Rocke, 
using PLS [24]. 

Data Method NB LDA SVM LR Literature 
Baseline 18.33 26.67 25.00 -- NCI 
MRMR 1.67 13.33 11.67 -- 

14.63 a 
5-class: 0 b, 0 b

Baseline 17.71 11.46 5.21 -- Lymphoma
MRMR 3.13 1.04 1.04 -- 

3-class: 2.4 c, 0 c

Baseline 10.96 10.96 10.96 -- Lung 
MRMR 2.74 5.48 5.48 -- 

-- 

Baseline 0 1.39 1.39 1.39 Leukemia
MRMR 0 0 0 0 

0 d 
1.39 e 

Baseline 11.29 11.29 11.29 11.29 Colon 
MRMR 6.45 8.06 9.68 9.68 

9.68 d 
6.45 f 

 
6. Discussions  
In this paper we emphasize the redundancy issue in feature 
selection and propose a new feature selection framework, 
the minimum redundancy – maximum relevance (MRMR) 
optimization approach. We studied several simple forms of 
this approach with linear search algorithms, and performed 
experiments on 5 gene expression datasets. Using Naïve 
Bayes, Linear discriminant analysis, Logistic regression 
and SVM class prediction methods, we computed the 
leave-one-out cross validation accuracy. These experiment 
results clearly and consistently show that the MRMR fea-
ture sets outperform the baseline feature sets based solely 
on maximum relevance. For discrete features, MIQ is the 
better choice; for continuous features, FCQ is the better 
choice. The divisive combination of relevance and redun-

                                                 
* Many classification studies have used Leukemia and Colon datasets. 
Due to space limitation, we only list two for each dataset in Table 9. 
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dancy of Eq. (5) appears to lead features with the least re-
dundancy.  

The main benefit of MRMR feature set is that by re-
ducing mutual redundancy within the feature set, these fea-
tures capture the class characteristics in a broader scope. 
Features selected within the MRMR framework are inde-
pendent of class prediction methods, and thus do not di-
rectly aim at producing the best results for any prediction 
method. The fact that MRMR features improve prediction 
for all four methods we tested confirms that these features 
have better generalization property. This also implies that 
with fewer features the MRMR feature set can effectively 
cover the same class characteristic space as more features 
in the baseline approach.  

Our extensive tests, as shown in Tables 4 ~ 8, also 
show that discretization of the gene expressions leads to 
clearly better classification accuracy than the original con-
tinuous data. 
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